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Abstract Soil organic matter (SOM) is a key indicator of soil quality although, usually,

detailed data for a given area is difficult to obtain at low cost. This study was conducted to

evaluate the usefulness of soil apparent electrical conductivity (ECa), measured with an

electromagnetic induction sensor, to improve the spatial estimation of SOM for site-

specific soil management purposes. Apparent electrical conductivity was measured in a

10-ha prairie in NW Spain in November 2011. The ECa measurements were used to design

a sampling scheme of 80 locations, at which soil samples were collected from 0 to 20 cm

depth and from 20 cm to the boundary of the A horizon (ranging from 25 to 48 cm). The

SOM values determined at the two depths considered were weighted to obtain the results

for the entire A Horizon. SOM distribution maps were obtained by inverse distance

weighting and geostatistical techniques: ordinary kriging (OK), cokriging (COK),

regression kriging either with linear models (LM-RK) or with random forest (RF-RK).

SOM ranged from 46.3 to 78.0 g kg-1, whereas ECa varied from 6.7 to 14.7 mS m-1.

These two variables were significantly correlated (r = -0.6, p\ 0.05); hence, ECa was

used as an ancillary variable for interpolating SOM. A strong spatial dependence was

found for both SOM and ECa. The maps obtained exhibited a similar spatial pattern for

SOM; COK maps did not show a significant improvement from OK predictions. However,

RF-RK maps provided more accurate spatial estimates of SOM (error of predictions was

between four and five times less than the other interpolators). This information is helpful

for site-specific management purposes at this field.
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Introduction

Soil organic matter (SOM) has great influence on soil physical, chemical, and biological

processes. Reduction of SOM levels will result in a decrease of soil fertility, soil nutrient

supply, porosity, and consequently, soil productivity (Gray and Morant 2003; Lozano-

Garcı́a et al. 2011). In addition, the rate of SOM loss can vary greatly, depending on

cultivation practices, type of crop cover, soil drainage status and weather conditions.

Frequently, soil sampling is time-consuming and expensive and, usually, a suitable amount

of SOM data is very difficult to obtain (Brevik et al. 2016). This high cost of collecting

SOM data through dense sampling across landscapes has created a need for methods of

inferring its spatial distribution. Thus, the description of SOM spatial variability through

maps obtained by different interpolation methods would be useful for site-specific man-

agement (Miller et al. 2015). Soil organic matter maps provide decision makers with a

useful tool to identify degraded areas and optimize agro-environmental measures (Piccini

et al. 2014). These methods include, for instance, inverse distance weighting (IDW) (e.g.

Bregt et al. 1992), several kriging techniques (e.g. Baxter and Oliver 2005; Bishop and

Lark 2006; Nerini et al. 2010; Hoffmann et al. 2014; Chen et al. 2015), generalised linear

models (e.g. Pachepsky et al. 2001; Dobson and Barnett 2008), and regression trees (e.g.

Rudiyanto et al. 2016).

These interpolations are susceptible to improve by using ancillary information. In this

sense, electromagnetic induction (EMI) sensors can provide useful data on the spatial

variation of certain soil properties and patterns within a field (King et al. 2005) and have

been used to support soil surveys and site-specific management (Brevik et al. 2012). Soil

apparent electrical conductivity (ECa) measured using geophysical methods, such as EMI,

has important advantages over traditional methods used to collect soil information because

of its speed, easy use, relatively low cost, and volume of data collected (Doolittle and

Brevik 2014). However, EMI techniques are site-specific, namely the relationships

between a given soil property and ECa have to be determined on a field-by-field basis. This

fact diminishes the hope for EMI to be a rapid, inexpensive and widely applied method of

soil exploration as thought about 20 years ago (Brevik et al. 2016). Nevertheless, ECa

might improve the accuracy and reliability of maps and provide more detailed information

on soil properties when the correlation between this variable and soil attributes has been

established (Sudduth et al. 2005; Brevik et al. 2012) and has been widely used as a

secondary variable in order to improve spatial estimations (Vitharana et al. 2006).

Geostatistical interpolation techniques are preferred respect to deterministic methods

because the latter account neither for estimation errors nor for the spatial autocorrelation of

data (Robinson and Metternicht 2006). Geostatistical methods have been extensively

applied in agriculture for the study of spatial variability of the main soil attributes (e.g.

Goovaerts 1999; Paz-González et al. 2000). Ordinary kriging (OK) is the most common

type of geostatistical interpolation; however, the quality of the estimation of the soil

properties can be improved and the spatial sampling intensities may be reduced by

incorporating ancillary information. In order to incorporate this auxiliary information, a

variable more extensively sampled over the studied field should be used through other
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geostatistical interpolation methods such as cokriging (COK) (Goovaerts 1999), external-

drift kriging (Nussbaum et al. 2014) and regression kriging (RK) with a linear regression

(LM-RK) model (Zhang et al. 2012) or with a non-linear regression model—random forest

(RF-RK) (Guo et al. 2015; Rudiyanto et al. 2016). In these cases, topographical (terrain

height, slope, aspect, etc.) and categorical parameters (soil type, texture, etc.) are com-

monly used as ancillary information.

In this context, the aim of this study was to assess the spatial distribution of SOM in an

agricultural field (in NW Spain) through different interpolation techniques (inverse dis-

tance weighting, OK, COK using ECa as an ancillary variable and RK using secondary

information from topographic data and ECa, in order to enhance the estimations. The

produced maps could be useful for attaining a site-specific management of agricultural

inputs because distinct areas within the field can be observed and farmers can act in

consequence when, for instance, applying fertilizers.

Materials and methods

Location of the study site

A 10-ha grassland site at Castro Riberas de Lea in NW Spain (43�1601400N, 7�4902000W,

403 m above sea level) was selected for this research (Fig. 1). This field is characterized by

small variations in topography, with a maximum height difference of about 1.10 m. The

soil of the site was developed on Quaternary material rich in gravel over clay Tertiary

material and was classified as Umbric Fluvisol according to FAO (IUSS Working Group

Fig. 1 Location of the experimental site within Galicia, topography of the plot and sampling points for soil
organic matter
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WRB 2014). Soil is sandy-loam to sandy textured, acidic (pH 4.4), with very low salinity

and the field was devoted to grassland. The climate of the study region is humid and

temperate with warm summers, Cfb according to the Köppen climate classification

(Köppen 1936). According to the data provided by a weather station less than 100 m away

from the study site, the mean temperatures (30-year average) during winter and summer are

6.5 and 16.2 �C, respectively. Moreover, mean annual rainfall is about 869 mm (30-year

average), with a dry season (June–July–August). During this dry period, rainfall is about

98 mm (30-year average); however, in 2011 it was only 42 mm. In November 2011, when

soil samples were collected, mean temperature was 9.7 �C and the monthly rainfall amount

was 68 mm.

A digital terrain model (DTM) (1 m cell size) was generated from LIDAR data (0.5

points m-2) obtained from the National Geographical Institute (IGN—Spain) and used for

the estimation of topographic features, including terrain height, slope, profile curvature,

tangential curvature, aspect and wetness index. These parameters were calculated with

QGIS 2.14.3 (QGIS Development Team 2016) and GRASS 7.0.3 (Grass Development

Team 2015).

Soil sampling and analysis

Apparent electrical conductivity (ECa) data were collected on 10 September 2011 using an

EM-38DD (Geonics Limited). The EM-38 was seated on a non-metallic trolley that was

pulled through the field with a van. Interline spacing was 10 m and the intensity of the

collected data was 0.66 measurements m-2. A global positioning system (GPS-RTK) was

used to determine the geographical coordinates of the ECa measurements. In this research,

two dipoles (vertical, ECa-V, and horizontal, ECa-H) of Geonics EM-38 were used.

The ESAP 2.35 software (Lesch et al. 2000) assesses the spatial dependency of the ECa

data and calculates soil sampling locations which best encompass the variability present in

the field, which is crucial information for determining the within-field variability of plant-

available nutrients (Mallarino and Wittry 2004). Therefore, 80 sampling points (Fig. 1)

were obtained by the ESAP 2.35 software for the studied prairie.

Soil samples were taken at two depths on the 80 spots selected from ECa measurements:

0–20 and 20 cm to the A horizon lower boundary (highly variable in this field; ranging

from 25 to 48 cm, depending on location). Samples were air-dried and sieved to 0.09 mm.

Organic matter content was measured after wet digestion following the Walkley and Black

(1934) method. SOM was determined for the two depths and then weighted and averaged

to obtain the results for the entire A Horizon. Bulk density was determined on the 80

sampling points using the cylindrical core method.

Descriptive statistics

The description of the data set includes examination of the mean, median, mode, standard

deviation, coefficient of variation (CV) and extreme minimum and maximum values. The

relationship between soil properties (ECa, bulk density) and topographic features (eleva-

tion, slope, profile curvature, tangential curvature and wetness index) and the SOM was

assessed through Pearson’s correlation coefficient in order to discern if ECa could be a

useful ancillary variable for estimating the spatial distribution of SOM through geosta-

tistical interpolations.
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Interpolations

Spatial distribution of SOM over the study plot was assessed through deterministic and

geostatistical methods using GSTAT software for R, including IDW, OK and COK

(Pebesma 2004) and RK was calculated using GSIF for R (Pebesma and Graeler 2016).

The mathematical background of these techniques can be found elsewhere (e.g. Goovaerts

1997; James et al. 2013) and, therefore, they are briefly described.

Inverse distance weighting (IDW)

This technique does not account for the spatial autocorrelation of data and does not provide

an estimation of the interpolation errors. However, it offers a rapid mapping of the studied

variable, and it can be used as a reference or when no spatial autocorrelation is detected in

the dataset. The method of IDW estimates SOM as a linear combination of several sur-

rounding observations, with the weights being inversely proportional to the square distance

between observations and the point to be estimated. Observations that are close to each

other on the ground tend to be more alike than those further apart, hence observations

closer to the record should receive a larger weight (Goovaerts 2000).

Estimation by geostatistical methods

Instead of the Euclidean distance, geostatistics uses the semivariogram as a measure of

dissimilarity between observations (Goovaerts 2000). Hence, spatial continuity of SOM

was investigated by calculating semivariograms, based on the assumptions of stationarity

in accordance with the intrinsic hypothesis (Vieira 2000). Because of the limited number of

measured data, only the omnidirectional semivariogram was computed, and hence the

spatial variability is assumed to be identical in all directions.

Covariograms between SOM and ECa were calculated, following the same methodol-

ogy, in order to use collocated cokriging as interpolation method.

The cross-validation technique (Chilés and Delfiner 1999) was used to check the model

performance. Two criteria were used to determine the goodness-of-fit of the model and to

adjust its parameters (Karnieli 1990): coefficient of correlation (r) and mean squared

prediction error (MSPE). For an unbiased prediction, centred on the true values, the MSPE

should be close to zero. In this paper, a five-fold cross-validation approach was used; data

were randomly split in five parts and, at each time, one of these parts is held out to compare

it with the predictions obtained from the remaining four parts.

For spatial interpolation of SOM using geostatistical methods, we used OK, ordinary

cokriging and RK.

Ordinary kriging (OK) considers two sources of information regarding the attribute, the

variation and the distance between points (Webster and Oliver 2001). It provides each cell

with a local, optimal prediction and an estimation of the error that depends on the semi-

variogram and the spatial configuration of the data (Goovaerts 1997). The OK weights

minimize the estimation variance, while ensuring the unbiasedness of the estimator.

When the secondary information is not exhaustively sampled, the estimation can be

done using a multivariate extension of the kriging estimator which is referred to as cok-

riging (COK), when the secondary variable is correlated with the variable of interest

(Goovaerts 1997). In our case, ECa was used as secondary information for estimating the

spatial distribution of SOM using ordinary COK.
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Regression kriging (RK) is based on the idea that the deterministic component of the

main variable is explained by a regression model obtained from secondary information in

all locations where we want to estimate the primary variable. Then, the location target

residual values are estimated using OK from the observed residuals at all sampled locations

(Zhang et al. 2012; Rossiter 2016). In this paper we consider two kinds of regression

models: linear (LM-RK) and random forest (RF-RK). For LM-RK, an interactive mode

was preferred to an additive one because it allows cross-terms between the different

secondary variables (Rossiter 2016). The RF-RK method consists of building a large

number of regression trees and average their predictions (Rossiter 2016; James et al. 2013).

Random forest classification and regression models were built using the ‘‘randomForest’’

package (Liaw et al. 2016) in the R free statistical software (R Core Team 2016). Random

forest regression models were built using 500 trees derived from 500 bootstrapped data

sets. The random forest algorithm can rank the relative importance of each predictor

variable based on the regression prediction error of the out-of-bag (OOB) portion of data

(Breiman 2001; Liaw et al. 2016; Rossiter 2016; Everingham et al. 2016). In the ran-

domForest package, predictor variable importance is reported as mean percent decrease in

classification rate for the classification model or mean increase in mean square error for the

regression model if that variable was removed from the analysis (Everingham et al. 2016).

In addition, the method averages the OOB cross-validations calculated during the con-

struction of the forest (Rossiter 2016).

The secondary topographic features (elevation, slope, profile curvature, tangential

curvature, aspect and wetness index) used to make the regression were derived from the

DTM, the other secondary parameters used were ECa-V and ECa-H estimated in each

gridcell using OK.

Results

The SOM content of the topsoil (0 cm to A horizon lower boundary) ranged from 46 to

78 g kg-1, with an average of 64.4 g kg-1 and a coefficient of variation (CV) of 10.2%. In

addition, ECa-V varied between 6.7 and 14.7 mS m-1, with an average of 10.7 mS m-1

and a CV of 16% (Table 1). These two variables were significantly correlated (r = -0.6;

Table 1 Summary statistics of the soil properties studied

Variable SOM SOM ECa-V ECa-V ECa-H BD
(g kg-1) (mS m-1) (mS m-1) (g cm-3)

Depth 0–20 cm 20–A horizon 0–A horizon 0–20 cm

Minimum 51.0 40.0 46.3 6.7 5.4 0.92

Maximum 79.0 77.0 78.0 14.7 13.2 1.54

Mean 67.6 60.1 64.4 10.7 7.9 1.24

Median 67.0 60.0 64.7 10.7 7.9 1.24

Variance 38.5 65.3 43.2 3.0 0.4 0.02

Standard deviation 6.2 8.1 6.6 1.7 0.7 0.13

Coefficient of variation 9.2 13.4 10.2 16.0 8.2 0.10

Skewness -0.40 -0.02 -0.31 0.18 1.72 -0.29

Kurtosis -0.02 -0.34 0.29 -0.49 6.83 0.13

SOM soil organic matter, ECa apparent electrical conductivity, BD bulk density
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p\ 0.05), especially when ECa was measured using the vertical dipole mode; the corre-

lation coefficient between SOM and elevation was high (r = 0.57, p\ 0.05) (Table 2;

Fig. 2). The average ECa-H value was 7.9 mS m-1, ranging from 5.4 to 13.2 mS m-1 and

the correlation between SOM with ECa-H was also significant but lower than with ECa-V

(r = -0.45, p\ 0.05). Bulk density varied between 0.94 and 1.54 g cm-3, with an

average of 1.24 g cm-3 and a CV of 10% (Table 1), the coefficient of correlation between

SOM and bulk density was low (r = -0.17). Means and medians were very similar and the

kurtosis and skewness coefficients were close to 0 (Table 1); therefore, no transformation

of the variables was performed in order to meet the requirements for geostatistical anal-

yses. In addition, the CV values indicate that these soil properties showed spatial vari-

ability and suggest the convenience of site-specific management (Moral et al. 2010).

All the variables considered in this study (SOM, ECa-V and ECa-H) showed strong

spatial dependence (Table 2). Fitted models were isotropic, meaning that the value of the

variable varies similarly in all directions and that the semi-variance depends only on the

distance between sample points. Semivariogram model parameters differed depending on

the soil property considered (Table 2). In the case of the SOM content of the topsoil,

nugget was null, sill was 38 and the relation nugget/sill zero. The range was 39 m, indi-

cating no spatial dependence for SOM after 39 m. The semivariograms for ECa-V and

ECa-H, also presented strong dependence, sill was 3 and 0.4 and range was 97 and 68 m,

respectively for ECa-V and ECa-H, then OK provided reliable estimations of these vari-

ables (Fig. 3).

The variables used for RK were elevation, slope, profile curvature and ECa-V because

they were the most relevant after the OOB analysis and explained 42 % of the variance of

the data when used for RF-RK.

Comparing the SOM maps from the five different estimation methods, similar spatial

patterns can be observed (Fig. 4). However, OK maps tended to smooth details and, then,

to underestimate the short-distance variability. COK maps did not present a significant

improvement from those obtained by OK (Fig. 4), but the SOM map obtained by RF-RK

showed a significant improvement, as shown by the cross-validation parameters that are

better for RF-RK (Table 3). In fact, the lowest error of prediction (MSPE) was observed

for RF-RK, whereas the highest MSPE was detected for IDW, which was five times greater

than that observed for RF-RK (Table 3). Moreover, error maps from RF-RK showed lower

values than those generated by OK (Fig. 5). It is interesting to note that all methods used

predicted the highest SOM concentrations in areas with the lowest ECa values.

The five interpolation techniques produced rather similar estimated SOM topsoil (0 cm

to A horizon lower boundary) contents for the whole field, ranging between 319 and 342 t;

being the lowest value predicted by RF-RK and the highest one by COK (Table 4).

Table 2 Theoretical model parameters fitted to experimental semivariograms from the studied datasets

Variable Model Nugget Sill Range (m)

SOM (A horizon) Spherical 0.00 38.00 59.0

ECa-V Spherical 0.01 3.01 97.0

ECa-H Spherical 0.09 0.40 68.0

Cross Variogram SOM to ECa-V Spherical -0.01 -6.20 74.4

Residual SOM LM-RK Exponential 0 18.47 22.76

Residual SOM RF-RK Exponential 3.24 4.05 18.60

SOM soil organic matter, ECa apparent electrical conductivity (either vertical, ECa-V, or horizontal, ECa-H)
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However, the relative importance of the different SOM content classes was considerably

different from one interpolation technique to the other (Table 4). IDW tended to assign

larger areas to the 60–65 and 65–70 g kg-1 classes. With OK, the extremes were smoothed

and the middle classes of SOM (55–60, 60–65 and 65–70 g kg-1) covered the largest area

of the estimated map. Similarly, COK provided larger areas to the 65–70 and

70–75 g kg-1 classes (Table 4), LM-RK showed higher values for the extreme classes than

the other methods, thus presenting a more heterogeneous picture of the SOM distribution

within the studied field than the other four interpolation techniques; whereas RF-RK

presented a SOM values distribution similar to OK (Table 4).

Discussion

Soil organic matter is an important indicator of soil quality, and has numerous direct and

indirect impacts on it (Lozano-Garcı́a et al. 2016). The spatial distribution information of

SOM in a given region is of paramount importance because it regulates local ecosystems

functioning and soil health, hence strongly affecting agricultural productivity and climate

change (Wang et al. 2014). Therefore, SOM spatial variation leads to differences in

concentration, fertilizer needs, activity of herbicides and crop yield within a field (Mal-

larino and Wittry 2004). Thus, uniform treatment of the soil will result in zones within a

field that are either over- or under-treated (Roy et al. 2006). Lal (2007) indicated that one

of the principal challenges for soil scientists regarding SOM was to upscale the sampled

point data to landscape, farm, watershed or region. In this context, several studies dealt

with finding out the best method for interpolating SOM point data to a farm or region scale

(Wu et al. 2009; Mabit and Bernard 2010; Marchetti et al. 2012; Piccini et al. 2014).

However, the incorporation of a secondary variable in order to improve estimations is of

bFig. 2 Relationships between soil organic matter (SOM) and apparent electrical conductivity, measured
either using a vertical (ECa-V) or b horizontal (ECa-H) sensors. The relationship between SOM and
elevation is also shown (c)

Fig. 3 Estimations map of ECa-V generated by ordinary kriging (units are mS m-1)
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particular concern since no clear conclusions have been reached in this regard (Tarr et al.

2005; Wu et al. 2009). In the current study, we used ECa as a covariate for improving

spatial interpolations of SOM over a grassland farm in NW Spain, checking five inter-

polation methods. Although similar spatial patterns were obtained, a more detailed

Fig. 4 Estimation maps of SOM generated by inverse distance weighting (IDW), ordinary kriging (OK),
ordinary cokriging (COK), regression kriging (LM-RF) and regression kriging random forest (RF-RK) (units
are g kg-1)

Table 3 Cross-validation parameters for the estimation of SOM using five different interpolation methods

Method MSPE (g kg-1)2 r

IDW 27.17 0.61

OK 25.55 0.64

COK 19.48 0.70

LM-RK 21.26 0.71

RF-RK 4.95 0.94

MSEP mean squared prediction estimation, r correlation coefficient between observed and predicted values
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assessment of the SOM variability within the studied field was obtained through RF-RK. In

practical applications, the information obtained from these methods can be employed for

site-specific management purposes.

In this context, a number of proximal and remote sensing tools are available nowadays

for mapping soil properties (Brevik et al. 2016); however, not all of them are equally useful

at all scales. Near infrared spectra (NIS) tools have been proven useful at large scales, such

as basins (Viscarra Rossel and Chen 2011). Electromagnetic induction has been increas-

ingly used to support soil surveys and site-specific management (Brevik et al. 2012). At

field and landscape scales, ECa maps have the potential to provide higher levels of reso-

lution and greater distinction of soil types than those maps prepared with traditional tools

and survey methods provided that there is significant variation in at least one of the factors

that affects soil ECa. For instance, EM-38 has been successfully used for characterising

SOM in sandy and non-saline fields of 50–70 ha (Farahani et al. 2005). Other authors

(Martı́nez et al. 2009; Sun et al. 2013; Gozdowski et al. 2015; Stadler et al. 2015) used EM-

38 for evaluating soil properties and crop yields in fields ranging from 0.75 to 10 ha. These

studies suggest that the EM-38 technique can be useful at field scales (1–35 ha).

Fig. 5 Error maps of SOM generated by ordinary kriging and regression kriging random forest (units are
(g kg-1)2)
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The number of points needed for reliably estimating semivariograms and the spatial

variability of a given soil property depends on the accuracy required and the resources

available for the survey (Goovaerts 1999); sampling techniques have evolved to deal with

this issue (Ladoni et al. 2010; Roberts et al. 2011). In the current study we took into

account the information provided by the ECa measurements for determining 80 sampling

points within the field, thus optimizing both accuracy and available resources. Results

indicated that our sampling strategy was appropriate to capture the spatial variability of

SOM distribution in the studied field.

As expected, both SOM and ECa distributions in the A horizon were not homogeneous

in the studied field. Greater SOM concentrations coincided with the higher areas within the

field, whereas ECa behaved in the opposite way, being higher in the lower areas of the

studied field. This result would help farmers to adjust fertilizer inputs or herbicide

applications for site-specific management within this field, thus reducing costs.

The relationship between SOM and ECa is highly variable and will depend on the

characteristics of the studied soil, since this relationship seems to be non-causal. Tarr et al.

(2005) found a positive moderate correlation between SOM and soil ECa (r = 0.24),

whereas Kitchen et al. (2003) detected a high correlation (r = 0.81). Similarly, Peralta

et al. (2015) found a high correlation between SOM and ECa in a pasture land (r = 0.84).

These findings indicated that correlations between ECa and soil properties must be

established on a field-by-field basis. In the current study, a significant negative relationship

between both variables was detected, with a rather strong correlation coefficient

(r = -0.6). Previous studies (Siqueira et al. 2014) carried out on a plot 500 m away from

the one used in the current study yielded very similar relationships between SOM and ECa-

V and ECa-H (r = -0.6 and r = -0.45, respectively) to those found in the current

research. The soil of that plot, although of different classification, showed similar texture

and a slightly greater average SOM (Siqueira 2009). The agreement between our results

Table 4 Areas of soil organic matter (SOM) classes obtained using inverse distance weighting (IDW),
ordinary kriging (OK), cokriging (COK), regression kriging with linear model (LM-RK) and regression
kriging with random forest (RF-RK); and SOM budgets associated

SOM classes (g kg-1) Area (m2) in SOM class as evaluated by

IDW OK COK LM-RK RF-RK

40–45 0 0 0 128 0

45–50 142 454 0 477 20

50–55 1 152 4 163 182 3 289 1 150

55–60 7 067 13 215 6 629 16 152 14 156

60–65 52 348 38 258 17 387 39 272 44 414

65–70 26 138 26 176 44 532 22 204 24 566

70–75 5 283 8 780 20 535 8 680 6 009

75–80 137 1 221 3 002 1 341 409

80–85 0 0 0 343 0

SOM average (g kg-1) 65.59 65.44 68.94 64.94 64.19

Total SOM content (t) 325.73 324.95 342.37 322.48 318.75

The SOM budget was established for the whole A horizon using an average bulk density of 1.2415 t m-3

(n = 80) on the 10-ha field
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and those found by Siqueira et al. (2014) encourage the use of EMI techniques for

exploring soil properties in similar areas.

High ECa values are associated with soils with finer texture and high SOM; however, in

the acidic soil studied here, SOM is not mineralized and does not contribute to soil

structure in order to increase electrical conductivity. This support the idea that the rela-

tionship between SOM and ECa is non-causal. Due to the small proportions of SOM in a

field soil, it is difficult that a modification in them would alter the measured ECa of the soil

profile. In fact, there is no physical basis to expect neither a direct positive nor a negative

relationship between SOM and ECa, as reflected by the different relationships determined

by other researchers (Tarr et al. 2005; Siqueira et al. 2014; Peralta et al. 2015). Topography

and general local soil conditions might modify SOM and ECa spatial distribution over a

field but ECa would probably depend on other soil properties.

Tarr et al. (2005) used soil ECa as an ancillary variable for mapping the spatial dis-

tribution of several soil properties, including SOM, in Iowa soils. When they used COK,

they obtained slight improvements since the correlation between SOM and ECa was

moderate. In our study, local detail improvements of the COK maps were due to the finer

sampling grid of the covariate, soil ECa (McBratney and Webster 1983), hence, COK maps

were slightly more detailed than those obtained by OK. However, the improvement in

estimation errors was not significant and the effort to model the cross semivariogram for

ECa, SOM did not compensate for the results of cross-validation, which were worse than

those obtained by the RF-RK method. Thus, in the studied field and with the ancillary

information used, RF-RK outperformed the other methods, this assertion coincides with

Rudiyanto et al. (2016) and Guo et al. (2015), who consider the random forest method a

good technique to estimate SOM associated to RK.

Both IDW and geostatistical (OK, COK, LM-RK and RF-RK) methods used provided

similar total SOM contents for the entire field. However, the relative importance of the

different SOM content classes differed from one technique to the other. Furthermore, the

spatial distribution patterns obtained by the different approaches used in this study were

rather similar. The IDW method tended to under-estimate the extreme values of the dis-

tribution and, hence, the accuracy of the map might be affected. In contrast, geostatistical

approaches gave softer maps and provided estimations of the interpolation errors.

Conclusions

The SOM content in the study area had a strong spatial dependence and showed a moderate

negative correlation with the ECa (r = -0.6) and a moderate positive correlation with the

elevation (r = 0.58); thus, the predicted SOM map by COK with ECa as a covariate

represented a slight improvement over that by OK. However, other authors have reported

very different relationships between these two variables, suggesting that this relationship is

non-causal. Nevertheless, electromagnetic data such as ECa might act as a useful auxiliary

variable for improving the accuracy and reliability of SOM spatial predictions in the field

studied here. In fact, the results for LM-RK using ECa, elevation and profile curvature were

similar to those obtained by COK. However, RF-RK improved significantly the results for

SOM estimation using topographic parameters that are readily available as well as ECa,

providing lower estimation errors than the other interpolation methods.

Therefore, the method used here for determining the best soil sampling scheme was

successful in capturing the spatial variability of soil properties of interest. The distribution
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maps obtained in this study allowed us for identifying areas with homogeneous SOM

contents, which may help for implementing precision agriculture practices through site-

specific fertilization or soil management.
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